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A parallel workload model and its implications

for processor allocation

Allen B. Downey �

November 1996

Abstract

We develop a workload model based on the observed behavior of par-

allel computers at the San Diego Supercomputer Center and the Cornell
Theory Center. This model gives us insight into the performance of strate-

gies for scheduling malleable jobs on space-sharing parallel computers. We

�nd that Adaptive Static Partitioning (ASP), which has been reported to
work well for other workloads, is inferior to some FIFO strategies that

adapt better to system load. The best of the strategies we consider is

one that explicitly restricts cluster sizes when load is high (a variation of
Sevcik's A+ strategy [13]).

Keywords: parallel, space-sharing, partitioning, scheduling, allocation,

malleable, multiprocessor.

1 Introduction

Space-sharing, distributed-memory multiprocessors, like the Intel Paragon, the
Cray T3E and the IBM SP2, are often used in supercomputing environments to
support scienti�c applications. These environments typically have the following
characteristics:

� For batch processing, jobs do not share processors, but rather allocate a
cluster of processors exclusively and run to completion. Many of these
machines also have an interactive partition that uses timesharing, but
this paper only addresses scheduling strategies for batch partitions (pure
space-sharing). In the environments we have observed, the vast majority
of computation is done in batch mode.
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San Diego Supercomputer Center, P.O. Box 85608, San Diego, CA 92186. Supported by NSF
grant ASC-89-02825 and by Advanced Research Projects Agency/ITO, Distributed Object
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� Many jobs on these systems are malleable, meaning that they are capable
of running on a range of cluster sizes. On the other hand, the programming
models used for scienti�c applications usually do not generate jobs that
can change cluster sizes dynamically. Thus, once a job begins execution,
its cluster size is �xed.

In current systems, users choose cluster sizes for their jobs by hand, and the
system does not have the option of allocating more or fewer than the requested
number of processors. The factors that should inuence the choice of a cluster
size include the characteristics of the application (resource requirements), the
load on the system (resource availability) and the performance requirements of
the user (deadlines, desired throughput, etc.). But users generally do not have
the information, tools, or inclination to weigh all of these factors accurately.
Allowing the system to make this decision has the potential to improve system
utilization and reduce users' wait times.

Toward this end, prior studies have proposed allocation strategies that choose
automaticallyhow many processors to allocate to each job. Most of these studies
evaluate the proposed strategies with analysis and simulation based on hypo-
thetical workloads. Each of the strategies we consider in this paper has been
evaluated, under di�erent workload assumptions, in at least three of [3] [13] [11]
[12] [14] [5] [1] [9]. Chiang et al. [1] compare the performance of these strategies
over a wide range of workload parameters, and argue that the discrepancies
among various studies are due to di�erences in the hypothesized workloads.

The goal of this paper is to focus this debate by constructing a new work-
load model based on observations of space-sharing systems running scienti�c
workloads. We intend this model to cover the range of workload parameters
most relevant to current workloads and hence most applicable to real systems.
By narrowing the range of workload parameters, we are able to examine the
proposed strategies in more detail and gain insight into the reasons for their
success or failure.

Section 2 presents the speedup model we use for our workload. The model
de�nes a relationship between the speedup of a job and the mean and variance
of its parallelism pro�le, making it possible to evaluate the importance of these
parameters for scheduling. Section 3 explains the distributions that make up
our workload model. Section 4 describes the simulation we used to evaluate
the scheduling strategies in Section 5. Section 6 presents the results of our
scheduling simulations. Section 7 summarizes our �ndings and proposes future
work.

2 The speedup model

In [2] we developed a model of parallel speedup that estimates the speedup of
a program as a function of its average parallelism and its variance in paral-
lelism. The intent of this model is to �nd a family of speedup curves that are
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parameterized by the average parallelism of the program, A, and the variance in
parallelism, V . To do this, we construct a hypothetical parallelism pro�le1 with
the desired values of A and V , and then use this pro�le to derive speedups. We
use two families of pro�les, one for programs with low V , the other for programs
with high V . In [2] we show that this family of speedup pro�les captures, at
least approximately, the behavior of a variety of parallel scienti�c applications
on a variety of architectures.

2.1 Low variance model

Figure 1a shows a hypothetical parallelism pro�le for an application with low
variance in parallelism. The potential parallelism is A for all but some fraction �
of the duration (0 � � � 1). The remaining time is divided between a sequential
component and a high-parallelism component. The average parallelism of this
pro�le is A; the variance of parallelism is V = �(A � 1)2.

A program with this pro�le would have the following speedup as a function
of the cluster size n:

S(n) =

8>>><
>>>:

An
A+�(n�1)=2

1 � n � A

An
�(A�1=2)+n(1��=2)

A � n � 2A� 1

A n � 2A� 1

(1)

2.2 High variance model

Figure 1b shows a hypothetical parallelism pro�le for an application with high
variance in parallelism. This pro�le has a sequential component of duration
� and a parallel component of duration 1 and potential parallelism A + A� �
�. By design, the average parallelism is A; by good fortune, the variance of
parallelism is �(A � 1)2, the same as that of the low-variance model. Thus
for both models � is approximately the square of the coe�cient of variation,
CV 2. This approximation follows from the de�nition of coe�cient of variation,
CV =

p
V =A. Thus, CV 2 is �(A� 1)2=A2, which for large A is approximately

�.
A program with this pro�le would have the following speedup as a function

of cluster size:

S(n) =

8<
:

nA(�+1)

A+A���+n�
1 � n � A +A� � �

A n � A +A� � �
(2)

Figure 2 shows a set of speedup curves for a range of values of � (and
A = 64). When � = 0 the curve matches the theoretical upper bound for

1The parallelism pro�le is the distribution of potential parallelism of a program[13].

3



a) Low-variance model

σ
2

σ
2

Low
variance
model

Hypothetical parallelism profile

Time

1

A

2A-1

σ1 - 

D
eg

re
e 

of
 p

ar
al

le
lis

m

b) High-variance model

σ

High
variance
model

A + A   - σσ

Time

A

1

1

D
eg

re
e 

of
 p

ar
al

le
lis

m

Hypothetical parallelism profile

Figure 1: The hypothetical parallelism pro�les we use to derive our speedup
model.
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Figure 2: Speedup curves for a range of values of �.

speedup|bound at �rst by the \hardware limit" (linear speedup) and then by
the \software limit" (the average parallelism A). As � approaches in�nity, the
curve approaches the theoretical lower bound on speedup derived by Eager et
al. [3]:

Smin(n) = An=(A+ n� 1) (3)

When � = 1 the two models are identical.

3 Distribution of parameters

In order to evaluate potential scheduling strategies, we would like to construct
a workload model that is as realistic as possible, given the available information
about real workloads. In this section we present our observations of the Paragon
at SDSC and the SP2 at CTC, and use these observations to derive a workload
model. This workload model will generate, for purposes of simulation, a set of
jobs with distributions of lifetimes and parallelism parameters (A and �) similar
to those of real workloads.

3.1 Distribution of lifetimes

Ideally, we would like to know the distribution of L, the sequential lifetime, for
a real workload. Sequential lifetime is the time a job would take on a single
processor, so if we knew L, A and �, we could calculate the speedup, S(n;A; �),
on n processors and the run time, L=S. But the accounting data we have from
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real systems does not contain sequential lifetimes; in general L is not known,
and often it is not even de�ned, because memory requirements prevent some
jobs from running on a single processor. On the other hand, we do know the
total allocated time, T , which is the product of wall clock lifetime and cluster
size. For programs with linear speedup, T equals L, but for programs with
sublinear speedups, T can be much larger than L. Keeping this overestimation
in mind, we will use observed distributions of T to construct the distribution of
L for our workload.

We have examined accounting logs from the Intel Paragon at the San Diego
Supercomputer Center (SDSC) and the IBM SP2 at the Cornell Theory Center
(CTC). Figure 3 shows the distribution of total allocated time for these ma-
chines. On both machines, the distribution is approximately linear in log space,
which implies that the cumulative distribution function has the form:

cdfT (t) = PrfT � tg = �0 + �1 ln t tmin � t � tmax (4)

where �0 and �1 are the intercept and slope of the observed line. The upper and
lower bounds of this distribution are tmin = e��0=�1 and tmax = e(1:0��0)=�1 .

Since this distribution is uniform in log space, we call it a uniform-log dis-
tribution. We know of no theoretical reason that the distribution should have
this shape, but we believe that it is pervasive among batch workloads, since
we have observed similar distributions on the Cray C90 at SDSC, and other
authors have reported similar distributions on other systems [4][15].

For the SDSC workload, we estimated the parameters �0 = �0:14 and �1 =
0:073 by linear regression. The �tted line, shown in Figure 3a, is a good match
for the observed data, except for the shortest 5% of jobs. This discrepancy is
negligible, though; the only e�ect is that a few jobs that we expect to run 10
seconds would run only one second instead.

For the CTC workload, we estimated an alternate model based on a two-
stage uniform-log distribution. In this model there are two classes of jobs:
short jobs, from a uniform-log distribution between e2:0 and e11:1 seconds, and
long jobs, from a uniform-log distribution between e11:1 and e14:5 seconds. The
multistage model, shown in Figure 3b, is visually a good �t for the measured
data.

Since T overestimates the sequential lifetimes of jobs, our workload model
uses a distribution of L with a somewhat lower maximum than the distributions
we observed. In our simulations, L is distributed in a single uniform-log stage
between e2 and e12 seconds. The median of this distribution is 18 minutes; the
mean is 271 minutes.

3.2 Distribution of average parallelism

For our workload model, we would like to know the parallelism pro�le of the jobs
in the workload. But the parallelism pro�le reects potential parallelism, as if
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a) SDSC workload
Distribution of total allocated time
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b) CTC workload
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Figure 3: Distribution of total allocated time (wall clock time multiplied by
number of processors) for 24907 batch jobs from the Intel Paragon at the San
Diego Supercomputer Center (SDSC) and for 50864 batch jobs from the IBM
SP2 at the Cornell Theory Center (CTC). The gray lines show the model used
to summarize each distribution.
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there were an unbounded number of processors available, and in general it is not
possible to derive this information by observing the execution of the program.
Kumar [7] has instrumented Fortran programs to perform run-time data ow
analysis and approximate their potential parallelism. But this analysis requires
programs to have a certain structure|it cannot analyze existing applications. In
[2] we proposed a technique for estimating the average parallelism of a program
by observing its speedup on a range of cluster sizes. But this approach is
based on simplifying assumptions about the nature of parallel overheads, so
the estimated values may or may not truly reect the internal structure of the
programs.

In the accounting data we have from SDSC and CTC, we do not have infor-
mation about the average parallelism of jobs. On the other hand, we do know
the cluster size the user chose for each job, and we hypothesize that these cluster
sizes, in the aggregate, reect the parallelism of the workload. This hypothesis
is based on the following justi�cation:

� The parallelism of a job is usually a function of the problem size. Larger
problems generally have more available parallelism.

� Users often submit jobs with problem size and cluster size chosen such
that the turnaround time is less than some constant time limit. Thus, the
cluster size and the problem size tend to increase together [6].

� In the aggregate, we expect the shape of the distribution of chosen cluster
sizes to reect the shape of the distribution of average parallelism.

Figure 4 shows the distribution of cluster sizes for the workloads from SDSC
and CTC. In both cases, almost all jobs have cluster sizes that are powers of
two. Neither the Intel Paragon nor the IBM SP2 require power-of-two cluster
sizes, but in both cases the interface to the queueing system suggests powers
of two and few users have any incentive to resist the combination of suggestion
and habit. We hypothesize that the step-wise pattern in the distribution of
cluster sizes reects this habit and not the true distribution of A. To derive
a smoother distribution more suitable for our workload model, we estimated
linear approximations of the observed distributions. The gray lines in the �gure
are the �tted lines.

Based on these observations, the distribution ofA in our workload is uniform-
log with parameters min = 1 and max = N , where N is the number of pro-
cessors in the system. This model �ts the observed data well, except that both
workloads contain signi�cantly more sequential jobs than the model. But this
surplus is disappearing as the workloads mature; in the past two months, the
fraction of sequential jobs at SDSC was 21%, down from over 40% a year ago.
At CTC this fraction is also falling as more parallel codes stabilize and be-
gin production runs. Thus more recent workloads match our model well (the
fraction of sequential jobs in our simulations is � 17%).
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(fraction of jobs with cluster size < n)

Number of processors (n)

SDSC

CTC

0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64 128 256

Figure 4: Distribution of cluster sizes for the workloads from SDSC and CTC.
The gray lines are the �tted distributions we used for our workload model.

3.3 Distribution of variance in parallelism

In general there is no way to measure the variance in potential parallelism of
existing codes explicitly. In [2] we proposed a way to infer this value from
observed speedup curves. To test this technique, we collected speedup curves
reported for a variety of scienti�c applications running on a variety of parallel
computers. We found that the parameter �, which approximates the coe�cient
of variance of parallelism, was typically in the range 0{2, with occasional higher
values.

Although these observations provide a range of values for �, they do not tell
us its distribution in a real workload. For this study, we use a uniform distribu-
tion between 0 and 2. We found that the speci�c shape of this distribution has
no e�ect on the relative performance of the allocation strategies we evaluate.

4 Simulations

To evaluate scheduling strategies for parallel applications, we used the models
in the previous section to generate workloads, and then used a simulator to
construct schedules for each workload according to each strategy. We compare
these schedules using several summary statistics as performance metrics (see
Section 4.1).
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Queueing models and simulations are often used to study systems that are
in steady state or statistical equilibrium; in other words, systems in which the
arrival rate equals the departure rate. Our simulation is intended to study
transient e�ects; that is, the behavior of systems during changes in either the
arrival or service rate. The transient behaviors we are interested in have been
observed in several supercomputing environments:

� In the early morning there are few arrivals, system utilization is at its
lowest, and queue lengths are short.

� During the day, the arrival rate exceeds the departure rate and jobs accu-
mulate in queue. System utilization is highest late in the day.

� In the evening, the arrival rate falls but the utilization stays high as the
jobs in queue begin execution.

Previous work has described these daily patterns on the Intel iPSC/860 at NASA
Ames and the Paragon at SDSC [4] [15].

To model these variations, we divided each simulated day into two 12-hour
phases: during the \day-time" phase, jobs arrive according to a Poisson process
and either begin execution or join the queue, depending on the state of the
system and the current scheduling strategy. During the \night-time" phase, no
new jobs arrive, but the existing jobs continue to run until all queued jobs have
been scheduled.

Figure 5 shows one of the schedules generated by our simulator. Hour 0,
at the top of the page, is roughly 8am; time proceeds down the page. The
length of each job indicates its duration. The width of each job is proportional
to its cluster size. The jobs have been arranged for visual clarity rather than
according to the topology of their allocations; thus, the width of the �gure is
greater than the number of processors in the system, and empty spaces do not
necessarily indicate idle processors. Jobs which were queued have a black tail
representing their queue time. The night-time interval, during which there are
no additional arrivals, is shaded.

We choose the day-time arrival rate in order to achieve a speci�ed o�ered
load, �. We de�ne the o�ered load as the total sequential load divided by the
processing capacity of the system: � = � � E[L]=N , where � is the arrival rate
(in jobs per second), E[L] is the average sequential lifetime (271 minutes in
our simulations), and N is the number of processors in the system (64 in our
simulations). We observe that the number of jobs per day is between 80 (when
� = 0:5) and 160 (when � = 1:0).

4.1 Metrics

As jobs enter and leave the system, we collect the following statistics:
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Figure 5: A typical daily schedule, with o�ered load � = 0:6, using the ASP
strategy (see Section 5.4.
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Load average : The nominal load in the system at any time is the fraction
of processors that are busy (allocated to a job). The load average is the
nominal load averaged over time. Because the jobs in this workload have
sublinear speedups, the total allocated time, T , exceeds the sequential
lifetime, L, whenever � > 0 and the cluster size is greater than 1. Thus,
the measured load may exceed the o�ered load.

Utilization : Utilization takes into account not only how many processors
have been assigned to jobs, but also the e�ciency with which those jobs
are running. E�ciency is the ratio of speedup to cluster size; utilization
is e�ciency averaged over processors and time. In most real systems
the e�ciency of jobs, and therefore the utilization of the system, are not
known.

Average turnaround time : The turnaround time is the time between the
arrival and completion of a job; i.e. the sum of its queue time and its run
time.

Average slowdown : Slowdown is the ratio of turnaround time to the shortest
possible turnaround time, as if the job had run on a dedicated machine.
In other words,

slowdown =
queue time+R(n)

R(N )
(5)

where R(n) is the run time on the allocated cluster size, n, and R(N )
is the hypothetical run time on all N processors. Slowdown is a useful
performance metric because it gives equal weight to all jobs regardless of
length, whereas average turnaround time tends to be dominated by long
jobs. Also, slowdown may better represent users' perception of system
performance, since it measures delays relative to job duration. For exam-
ple, a long queue time is more acceptable for a long job than for a short
one. Slowdown captures this implicit cost function.

5 Allocation Strategies

Scheduling strategies consist of a queueing strategy that chooses which queued
job to run and an allocation strategy that chooses how many processors to allo-
cate to each job.

The queueing strategy we consider is �rst-in-�rst-out (FIFO). The advan-
tages of FIFO are predictability (it is easier to estimate when a queued job will
begin execution) and avoidance of starvation (there is no danger of stranding
a large job in queue while smaller, later arrivals run). The disadvantages are
possibly lower utilization (a job at the head of the queue might leave processors
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idle waiting for a large cluster) and large slowdowns (giving priority to short
jobs would reduce the average slowdown over all jobs).

In future work we would like to evaluate some of the non-FIFO strategies
that have been proposed. For example, Ghosal et al. [5] propose a \First
Fit" strategy, in which the system chooses the �rst queued job whose chosen
cluster size is smaller than the number of idle processors. Chiang et al. [1]
have shown that a similar strategy is most e�ective if there is a correlation
between duration and cluster size; in this case giving priority to small jobs
tends also to give priority to short jobs. The workloads we observed show a
strong correlation between cluster size and total allocated time: at SDSC the
coe�cient of correlation is 0.6; at CTC it is 0.3. This correlation does not a�ect
the FIFO strategies we are evaluating, but it suggests that non-FIFO strategies
are promising.

The following sections describe the allocation strategies we consider. None
of these strategies is work-conserving, meaning that in some circumstances pro-
cessors may be left idle that could have been allocated to a job. Rosti et al. [9]
show that non-work-conserving strategies are best if the workload contains jobs
with limited parallelism, if the arrival process is bursty, or if the distribution
of job lifetimes is highly variable. The workloads we observed meet all these
criteria.

5.1 PWS

Several authors [3][5] have proposed the idea that the optimal cluster size for a
job maximizes the power, �, de�ned as the product of speedup and e�ciency.
Since e�ciency, e, is de�ned as S=n, � is S2=n. The cluster size that maximizes
� is called the processor working set, and hence this strategy is called PWS.

Most systems do not have enough information about applications to �nd
their processor working set. But for our hypothesized speedup model (Equa-
tions 1 and 2) we can �nd the point of maximum power analytically. For the
low-variance model,

pws =

8<
:

A � � 2A=(3A� 1)

�(A�1=2)

1��=2
� � 2A=(3A� 1)

(6)

For the high variance model pws = (A� + A � �)=�. Figure 6 shows pws for
a range of values of � (with A �xed at 64). For values of � less than � 2=3,
the point of maximum power is pws = A, which is in accord with the heuristic
that the number of processors allocated to a job should be equal to its average
parallelism. It also agrees with the colloquial interpretation of a \knee," i.e. a
change in the slope of the speedup curve (see Figure 2).

But as the value of � approaches 1, pws increases quickly to 2A � 1. For
� > 1, pws decreases and approaches A � 1 asymptotically. This result is
surprising because it violates the intuition that the optimal allocation for a job
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should decrease as the variance in parallelism increases, which is one of the
assumptions of Sevcik's allocation strategy (see below). Our results (Section 6)
show that neither intuition is correct: the pws is not an optimal allocation and
decreasing allocations for jobs with high � is not useful.

Eager et al. [3] prove that for any parallelism pro�le, pws is bounded by
A=2 � pws � 2A � 1. Within our speedup model, pws never approaches the
lower bound, but it reaches the upper bound when � = 1, a value we have found
is not uncommon for real applications.

5.2 AVG and MAX

Several authors have proposed the idea that a job should be allocated a number
of processors equal to A, the average parallelism. Eager et al. [3] suggest that
this strategy should do well because A is always within a factor of two of pws.
Interestingly, we �nd that this strategy, AVG, performs better than PWS, which
it is supposed to approximate.

Another strategy suggested by the speedup curves in Figure 2 is MAX,
which allocates enough processors to achieve the maximum speedup for the job;
in other words, it allocates the minimumn such that S(n) = A. For our speedup
model:

max =

8<
:

A � = 0
2A 0 < � � 1

A+ A� � � � � 1
(7)
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is speci�c to the parallelism model used by Sevcik; in general, the variance in
parallelism is not bounded.

5.3 Sevcik's allocation strategy

Sevcik [13] has proposed an allocation strategy that chooses cluster sizes as a
function of the average parallelism of the job, A, the variance in parallelism, V ,
and the o�ered load, �. This strategy is based on the intuition that cluster sizes
should be large when A is large, but should get smaller as V or � increases.
Sevcik calls this strategy A+; we call our variation of it SEV. The primary
distinction is that we use the parameter � where Sevcik uses V . The reason we
use � as the measure of variance of parallelism is that V increases with A; �,
which approximates the coe�cient of variation, is independent of A.

Figure 7 shows this allocation strategy graphically: (1) for very low loads,
cluster sizes vary from N for jobs with low V to A for jobs with high V , (2)
at some moderate load �, all jobs are allocated A processors, and (3) for high
loads, cluster sizes vary from A for jobs with low V to 1 for jobs with high V .

The value of � is the load at which the optimal allocation per process is
equal to A. Sevcik chooses the value of � based on a queueing model with an
exponential distribution of job lifetimes (CV = 1); for this workload � is roughly
0:25. As CV increases, we expect � to decrease, reducing cluster sizes in order
to lessen the danger of assigning a large cluster to a very long job. Some studies
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Figure 8: Each curve shows the average utilization of a simulated 64-processor
system with o�ered load �. The parameter k is the fraction of A processors
assigned to each job. Each data point is the average of 60 simulated days.

have used the same value of � for workloads with CV > 1. Part of the reason
these studies report poor performance for this strategy may be that � is not
calibrated.

To �nd the value of � for our workload, we ran our simulator with a range
of o�ered loads � and with a range of values of a parameter, k, which is the
fraction of A processors allocated to each job. Thus, the cluster size for each
job is kA. We expect � to be the value of � for which the optimal allocation is
A; in other words, the o�ered load for which k = 1 yields the best performance.

Figure 8 shows the average utilization of a simulated 64-processor system
with values of � = 0.2, 0.4, 0.6, 0.8 and 1.0, and values of k between 0.1 and
1.0. Figure 9 shows the optimal value of k chosen for each value of �. The gray
line indicates the hypothetical linear trend.

We conclude: (1) one of Sevcik's assumptions|that the optimal allocation
size should decrease linearly as the load increases|is at least approximately
correct, and (2) the value of � is at or near zero. It is di�cult to make the
latter claim precise, since for low loads (� < 0:4) the value of the parameter has
almost no e�ect on performance, and hence \optimal value" has little meaning.

With � = 0, the allocation strategy in Figure 7 can be simpli�ed as in
Figure 10. But before we can implement this method, there is one other free
parameter that needs to be resolved|the maximum variance. In Sevcik's work-
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Figure 9: For each value of � we have chosen the value of k that maximizes
utilization; the vertical error bars show the range of values where this maximum
may fall. The gray line extrapolates until k = 1, which is approximately at
� = 0.

load model there was an upper bound on a job's variance in parallelism. For our
workloads, the parameter we use to measure variance, �, is unbounded in theory,
but we have imposed the bound � � 2. This bound is based on our estimates
of � for a variety of speedup curves reported by application implementors.

Sevcik also proposes a variant strategy, A+&mM, which imposes a maximum
and minimum cluster size on each job. In our implementation, the minimum
size is 1 and, since � = 0, the maximum cluster size is A. In Section 6.4 we
discuss the impact of jobs with minimum cluster sizes greater than 1.

5.4 ASP

The strategies we have described so far have been based on the idea that the
optimal allocation for a job depends on the characteristics of the application. For
purposes of comparison, we also consider a form of adaptive static partitioning
(ASP) based on the notion that it is preferable to have as many jobs running as
possible, rather than waiting in queue, even if they run on small cluster sizes.

Toward this goal, the ASP strategy takes the number of free processors (at
the time of an arrival or completion) and divides them evenly among the jobs
in queue. In our implementation, no job is allocated more processors than it
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Figure 10: A simpli�ed version of Figure 7 with � = 0:0. For high loads,
the cluster size varies from A to 1, depending on the coe�cient of variation of
parallelism, �.

can use (see Equation 7). Chiang et al. [1] study a similar strategy, called
ASP-max, but their maximum cluster size is a system parameter that does not
depend on application characteristics. For workloads in which parallelism does
not vary greatly from job to job, they report that ASP-max is better than PWS,
AVG, or SEV. For workloads with large variance in A, though, their results are
consistent with ours | the performance of ASP is relatively poor. We explain
this result in more detail in Section 6.3.

6 Results

In this section, we evaluate the performance of the proposed allocation strate-
gies. We consider two variations of each strategy:

Stubborn strategies : These strategies choose an \ideal" number of proces-
sors for each job and will allocate no fewer. If there are not enough free
processors, the job waits in queue.

Greedy strategies : These jobs treat the \ideal" cluster size only as an upper
bound; if fewer processors are available, the job begins execution immedi-
ately on the smaller cluster.
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We �nd that greedy strategies are better than stubborn strategies by all
metrics. In Section 6.4 we consider hybrid strategies that can allocate fewer
than the ideal number of processors (greedy), but which nevertheless impose
some lower bound on cluster sizes (stubborn). We �nd that the pure greedy
strategy is better than hybrid strategies with even moderate minimum cluster
sizes.

Since ASP is inherently a greedy strategy, there is no stubborn version. We
include ASP in both groups to make it easier to compare their performance.

6.1 Stubborn strategies

Figure 11a shows the utilization of a simulated 64-node system with the stub-
born version of the allocation strategies. We consider only o�ered loads greater
than 0.5 because as we saw in Figure 8, for lower loads allocation strategy has
little e�ect on performance. Also, the systems we observed operate at an average
load (fraction of busy processors) between 0.6 and 0.8.

The performance of ASP is reasonably good; utilization ranges from 0.4 to
0.6 and mean turnaround times range from 5000 seconds when � = 0:5 to 9000
seconds when � = 1:0.

The performance of the stubborn strategies is abysmal. Even SEV, which
achieves reasonably good utilization, yields turnaround times twice as long as
ASP's. The other methods are even worse: turnaround times under AVG are
5{8 times longer than ASP's, under PWS 13{17 times longer, and under MAX
17{21 times longer. The dominant term in the excess is queue time; jobs are
spending too much time in queue waiting for their \ideal" cluster sizes, rather
than running immediately on what's available.

We conclude that is that it is infeasible to choose a cluster size for a job
solely on the basis of its parallelism pro�le. The allocation strategy must be
exible enough to adapt to system load by allocating smaller-than-ideal cluster
sizes when necessary.

6.2 Greedy strategies

In this section, we consider strategies that use application characteristics to
choose a maximum cluster size, but that require nominimum cluster size. These
strategies are greedy in the sense that if there are any idle processors, the job
at the head of the queue will allocate them immediately and begin execution,
even if the number of processors is much less than the application's available
parallelism.

The advantages of greedy strategies are higher utilization and lower queue
times. The potential disadvantage is that long jobs with high parallelism might
be allocated far too few processors, resulting in high turnaround times. Fig-
ure 11b shows that the short queue times that result from small cluster sizes
clearly outweigh the longer run times. The greedy strategies are better than the
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Figure 11: Utilization as a function of o�ered load for (a) the stubborn version
and (b) the greedy version of each strategy. Each data point is the average of
1200 day-long simulated runs. The size of the data markers (squares, circles,
etc.) is approximately two standard deviations. Thus, non-overlapping data
markers indicate statistically signi�cant variations.
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Figure 12: Average cluster size for each strategy for a range of o�ered loads. In
each case, the cluster size decreases as load increases. Each data point is the
average of 120 day-long simulated runs.

stubborn strategies by every metric. All of the greedy strategies perform better
than ASP, as opposed to the stubborn versions, all of which are signi�cantly
worse.

The primary reason for this improvement is that these strategies are load-
sensitive; that is, as the o�ered load increases, the average cluster size decreases.
Figure 12 shows the average cluster size allocated by each strategy for a range
of loads. ASP's curve is steepest; i.e. it is most sensitive to load. In the next
section, we suggest that they reason for ASP's relatively poor performance is
that it is too load-sensitive.

Although the di�erences among the greedy strategies are small, it is in-
teresting to see that the performance of PWS is marginally worse than that of
AVG (the di�erences in turnaround times and slowdowns are more pronounced).
Thus we conclude that the point of maximumpower (the \knee" of the speedup
curve) is not an optimal allocation.

6.3 A closer look

In order to investigate the relationships among various performance metrics, we
set � = 0:75 and examine the proposed strategies in more detail. Table 1 shows
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several summary statistics for each strategy, averaged2 over � 15000 jobs (120
simulated days).

Table 1

measured util- average average average 90th
load ization turnaround queue cluster size percentile

average time time (CV ) slowdown

SEV .64 .52 5858 204 7.8 (1.04) 11.6
AVG .70 .52 5782 372 9.4 (1.07) 35.3
PWS .73 .52 6017 566 10.2 (1.10) 77.8
MAX .81 .51 6597 1115 10.7 (1.11) 249
ASP .77 .49 7510 402 9.9 (1.24) 63.6

Strategies that allocate large cluster sizes tend to have high measured loads|
they leave fewer idle processors. But load only measures how many processors
are busy, not how e�ectively they are being used. Since utilization also considers
the e�ciency of running jobs, it is a better indicator of performance than load.

It is often observed that there is a potential conict between maximizing sys-
tem utilization and minimizing average turnaround time. For the strategies we
considered, though, the two metrics are consistent; whatever strategy resulted
in the highest utilization also yielded the lowest average turnaround times. On
the other hand, slowdown and turnaround time are not always consistent; for
example, SEV su�ers somewhat longer turnaround times than AVG, but yields
much better slowdowns. Since slowdown reects users' perception of system
performance, it might be preferable to choose a strategy that achieves minimal
slowdowns, even with (moderately) longer turnaround times.

There is a clear relationship between average cluster size and average queue
time. The strategies that allocate the fewest processors per job have the shortest
queue times. But the tradeo� is that smaller cluster sizes result in longer run
times. The proposed strategies operate at di�erent points along this tradeo�:

� SEV allocates the smallest cluster sizes, resulting in the shortest queue
times, but incurs the longest run times.

� AVG and PWS reduce run times by allocatingmore processors per job, but
this bene�t is almost exactly balanced by greater queue times; thus, the
utilization of the three strategies is the same and the average turnaround
times are similar.

� On the other hand, MAX allocates so many processors per job that the
additional queue time overwhelms the saved run time. Utilization for this
strategy is lower and turnaround times are higher.

2We report the 90th percentile of slowdown rather that its mean because the distribution
of slowdowns is long-tailed, and for such distributions order statistics (median and other

percentiles) are more robust, and hence more meaningful, than moment statistics (mean,
variance, etc.).
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Of the methods with the highest utilization, SEV has by far the lowest
slowdowns. One of the reasons SEV does well is that it takes load into account
explicitly and reduces cluster sizes when load is high. The other strategies
achieve a similar e�ect implicitly, by using the number of free processors as a
proxy for the current load, but this implicit load-sensitivity is less precise|
these methods sometimes allocate too many processors during a momentary
lull. Figure 5 provides an example. At Hour 10, a large job arrives during a lull
and allocates a large fraction of the machine. While that job runs (for over two
hours) 16 smaller jobs arrive and wait in queue for the large job to complete.

Of the strategies proposed, only SEV would avoid this mistake by restricting
the cluster size of the large job in anticipation of future arrivals. Of course, the
disadvantage of SEV is that it is necessary to know the o�ered load on the
system a priori, or estimate it dynamically. Our simulation of this strategy
assumes optimistically that the o�ered load is known exactly.

We have discussed how a momentary lull causes some of the strategies to
allocate too many processors, but there is also the danger that a momentary
surge in queue length will cause the system to allocate too few processors. Most
of our strategies avoid this type of error by allowing the job at the head of
the queue to choose a cluster size regardless of queue length. ASP is the only
strategy that takes queue length into account, and it su�ers for it.

The reason ASP performs relatively poorly is that it is most likely to make
extreme allocations (very large or very small) during short-term variations in
load (lulls and surges). To support this claim we examined the variance in
cluster size for each strategy. As expected, ASP has a higher CV of cluster size
than any of the other strategies (1.24 compared to a range of 1.04 to 1.11). We
conclude that the success of a scheduling strategy lies in its ability to adjust to
long-term changes in load (as in the daily cycle we model) without over-reacting
to short-term variations.

6.4 Hybrid strategies

We have presented several ways to use application characteristics (A and �) to
derive cluster sizes, and suggested two ways to use those cluster sizes as part
of an allocation strategy. In the stubborn version, the derived cluster size is
both the minimum and maximum number of processors a job can allocate. In
the greedy version, it only determines the maximum size; most of the time the
cluster size depends on the number of free processors in the system. We have
shown that the greedy versions, which impose no minimumon cluster size, yield
much better performance by all metrics.

It is natural to wonder whether there is a compromise between these extremes
that might do even better, perhaps by imposing a minimumcluster size for each
job. To evaluate these hybrid strategies, we introduce a parameter, c, which is
the fraction of the maximum cluster size that is guaranteed. In other words, if
the maximum cluster size for the job at the head of the queue is n, then the
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job will not run until at least cn processors are available. Thus, when c = 0 the
strategies are greedy and when c = 1 they are stubborn.

Figure 13 shows that imposing a minimumcluster size does not improve any
of the proposed strategies. For some of the strategies, a low minimum improves
utilization somewhat, but not signi�cantly. Imposing a large minimumdegrades
performance greatly, reducing utilization and increasing turnaround times. We
conclude that the greedy strategies are best.

Real applications that use a lot of memory may require a minimum cluster
size because the performance of the memory hierarchy degrades as memory
demand per processor increases. Our results suggest that the presence of jobs
with moderate processor requirements does not degrade the performance of the
system, especially with SEV or AVG, both of which can tolerate c = 0.4 { 0.6
before their performance deteriorates signi�cantly. On the other hand, Setia [10]
has examined the e�ect of memory constraints on cluster size, and �nds that
wide-ranging minimum cluster sizes signi�cantly impair performance. Parsons
and Sevcik [8] propose a model for these memory bounds and evaluate scheduling
strategies that coordinate the allocation of memory and processors.

6.5 Sensitivity to variance

In Section 6.2 we argued that sensitivity to load is more important than sen-
sitivity to application characteristics, but that application characteristics were
useful nevertheless. In this section, we show that it is primarily A that is useful
in choosing cluster sizes, and that sensitivity to variance is not important.

Figure 14 shows the relationship between cluster size and � for each strategy
(with A �xed). The two strategies that are most sensitive to variance are SEV,
which decreases the cluster size linearly as � increases, and PWS, which has the
counter-intuitive relationship derived in Section 5.1.

We would like to investigate whether the performance of these strategies de-
pends on these particular relationships, or whether similar, variance-insensitive
strategies might do as well. We consider two new strategies, 3/2 AVG and
Simpli�ed SEV, that are insensitive to variance (�), but which are designed to
allocate the same number of processors per job on average. 3/2 AVG is the same
as AVG except that the maximum cluster size for each job is 3=2A. Simpli�ed
SEV is the same as SEV except that for all jobs � is considered to be 1. Fig-
ure 15a shows that these strategies allocate the same cluster sizes, on average,
as their variance-sensitive counterparts.

Figure 15b shows that the average turnaround time for Simpli�ed SEV is
not signi�cantly di�erent from that of SEV; in other words, variance-sensitivity
has no e�ect on the performance of SEV. This contradicts one of the underlying
assumptions of Sevcik's method, that cluster size should decrease as variance
increases.

On the other hand, the strange relationship between � and cluster size used
by PWS does have a signi�cant impact on performance. The variance-insensitive
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Figure 13: System utilization (a) and average turnaround time (b) as a function
of the minimum cluster size. Each data point is the average of 120 simulated
days, with o�ered load � = 0:75.
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Figure 14: The relationship between cluster size and variance in parallelism (�)
for each of the proposed strategies.

version of this strategy does signi�cantly worse by all metrics. Although this
result is surprising, it has no practical importance, since AVG, which is variance-
insensitive, performs better than even the variance-sensitive version of PWS.
Thus we conclude that knowing variance in parallelism for each job is not useful
for allocation.

7 Conclusions

� One of the strategies recommended in other studies (ASP) did not per-
form well for our workload. We show that this policy is too sensitive to
short-term variations in system load. It performs worse than simple FIFO
strategies that use application characteristics to bound cluster sizes.

� The application characteristics we examined, average and variance of par-
allelism, are useful for choosing the upper bound on cluster size (and
thereby imposing a lower bound on e�ciency). We found, though, that
strategies that considered variance of parallelismwere no better than those
that considered only average parallelism.

� The processor working set, or \knee" of the speedup curve, is not an
optimal processor allocation.
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Figure 15: Average cluster size (a) and turnaround time (b) as a function of
o�ered load, comparing two of the proposed strategies with variance-insensitive
versions. Each data point is the average of 120 simulated days.
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� It is not necessary to set maximumcluster sizes precisely. There is a trade-
o� between large clusters/long queues and small clusters/short queues, but
within a wide range, system performance (measured by average turnaround
time) does not vary greatly.

� Of several strategies with equivalent turnaround times, Sevcik's strategy,
which uses a priori knowledge about system load to restrict cluster sizes,
yielded the lowest slowdowns. Depending on what metric matters most
to users, this strategy might be the best choice.

� One of Sevcik's underlying assumptions | that cluster sizes should de-
crease linearly as load increases | has been validated. The other un-
derlying assumption | that jobs with a more variable parallelism pro�le
should allocate fewer processors | has been contradicted.

� Lifetimes for batch jobs on supercomputers are distributed uniformly in
log space. Our uniform-log model is useful for summarizing these distri-
butions and generating simulated workloads. The observed distributions
have coe�cients of variation in the range 2{4.

7.1 Future work

When a job arrives at the head of the queue, there is a conict between the
system, which would like the job to begin execution as soon as possible, and
the job, which might enjoy a shorter turnaround time by waiting until a larger
cluster size is available. We would like to investigate this conict and address
these questions:

� How much do individual jobs bene�t by leaving processors idle and waiting
for larger clusters?

� How much do these stubborn jobs hurt the system as a whole by increasing
the queue times of other jobs? This paper has shown that a naive stubborn
policy can severely degrade system performance.

� In a real system, is it tenable for the scheduler to make decisions that are
contrary to the immediate interests of users, or will users subvert such a
system?

Our goal is to �nd an allocation policy that maintains acceptable overall
performance without creating incentives for users to manipulate the system for
their own bene�t.
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